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Derivation of van der Waals Radii from Known Crystal Structures 
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Methods which can be used for determining the van der Waals diameter constant in interatomic inter- 
action potentials by using known structures of molecular crystals are discussed. It is shown that the 
usual lattice energy minimization procedure is invalid due to the presence of molecular strain energy. 
A method based on the equilibration of nearest-neighbour interactions and the internal pressure is 
developed. Calculations using all available methods have been made for the three crystalline phases of 
selenium and results are given. 

Introduction 

Accurate prior knowledge of the interactions between 
non-bonded atoms is essential if calculations relating 
to such matters as the magnitude of packing forces in 
molecular crystals and the relationship between con- 
formation and energy in sterically hindered molecules 
are to be meaningful. A further important use for non- 
bonded interactions has been found (Coulson, 1960) 
in the field of molecular physics where it has been 
realized that their influence on the length of chemical 
bonds may be highly significant. Another consequence 
of the availability of satisfactory interaction potentials 
would be that trial structure determinations from pack- 
ing considerations, such as described by Milledge 
(1962), could be put on a more quantitative (energy) 
basis for molecular crystals containing molecules of 
known geometry. 

The purpose of this paper is to investigate various 
methods which might be used for determining the van 
tier Waals diameter constant in an assumed mathe- 
matical form of interaction potential from a knowledge 
of the geometrical arrangement of atoms in a molec- 
ular crystal. We will show that lattice energy calcula- 
tions cannot be handled exactly as the molecular strain 
energy contribution cannot be calculated. A method 
based on internal pressure is developed to circumvent 
the difficulty. 

* Present address: Department  of Chemistry, Technion - 
Israel Institute of Technology, Haifa, Israel. 

Methods which have been used for 
estimating interaction potentials 

Two basically different approaches have been used by 
other workers in attempting to derive interatomic in- 
teraction potentials for non-bonded atoms. The first 
approach involves the deduction from first principles 
of the attractive term in the interaction expression. 
Examples of this are due to Slater & Kirkwood (1931), 
Kirkwood (1932) and London (1930). These have been 
applied to hexachloroethane by Sasada & Atoji (1953) 
and result in attractive energies with a spread of some 
12 % about the mean value. All these interactions in- 
volve the reciprocal sixth power of the interatomic 
distance. The repulsive part of the interaction has been 
derived by Born & Mayer (1932) using a quantum- 
mechanical treatment. This, however, was not used by 
Sasada & Atoji (1953) due to the unavailability of cer- 
tain constants needed in the expression. 

Theory thus indicates that a reasonable general ex- 
pression for non-bonded interactions would have an 
exponential repulsive part and an inverse sixth power 
attractive part (considering only dipole-dipole inter- 
actions). This is the basis for the existence of various 
heuristic expressions for the interatomic interaction: 
the 6-exp deriving directly from theory and the 6-12 
interaction of Lennard-Jones (1937) differing from this 
in the repulsive part alone. Of these two, the latter has 
the advantage of containing only two constants and 
as its ability to describe non-bonded interactions is 
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remarkably good, bearing in mind its simplicity, it will 
be used in the present work. 

Existing methods for the derivation of optimum constants 
in interactions of assumed form from solid-state data 

Comer (1939) has used the 6-n intermolecular poten- 
tial of Lennard-Jones (1937) and an energy minimiza- 
tion method to optimize the two constants in each of 
the interactions for neon and argon in terms of the 
value of the exponential n. Only after zero-point motion 
is taken into account do the values of the constants, 
derived from the spectrum of interatomic distances and 
the vaporization energies of the crystals, agree with 
those derived from gas-phase properties. The optimum 
values of n range from 10.5 to 12.6 with a mean of 
11.5 and taking n as 12 is thus a good approximation. 

Strel'tsova & Struchkov (1961) have used the 6-exp 
interaction to determine the values of r0, the separation 
at equilibrium, for CI-C1, CI-C and C-C approaches. 
Their calculations are based on the hexachlorobenzene 
structure which they determined themselves. They as- 
sume values for the three other constants in each inter- 
action and then establish the value of r0 such that the 
calculated energy for all interactions of one type is a 
minimum. On this basis three values of r0, for the three 
types of interaction under consideration, are obtained. 
These are probably reasonably accurate but are un- 
doubtedly liable to error resulting from (1) indepen- 
dent minimization of the energies due to the three 
types of interaction instead of minimizing their sum 
alone, and (2) neglect of the molecular strain energy. 

Derivation of optimum constants from 
energy considerations 

The manner in which the energy of an array of mole- 
cules can be used to establish the optimum values of 
the constants in an assumed expression for the form 
of the interaction potential can best be seen from con- 
sidering the crystallization process. Consider thus a 
large number of perfectly rigid (i.e. non-deformable) 
molecules, possessing the gas-phase conformation and 
containing only one electronic form of one element, 
crystallizing at 0 °K into a zero-point-motion-free crys- 
tal in which the interactions are additive and exclu- 
sively according to a specified form of interaction 
potential. The arrangement adopted will be such that 
the potential energy of the system is a minimum. At 
this stage the external force on each atom in a cen- 
trally situated molecule will not, in general, be zero owing 
to molecular shape irregularities and the fact that the 
whole crystal is in a state of compression resulting 
from the operation of long-range attractive interac- 
tions within the crystal. 

If the temporarily assumed rigidity of the molecule 
is now relaxed, it will deform in concord with the forces 
acting upon its constituent atoms and a simultaneous 
diminution in the lattice energy and (smaller) increase 

in the molecular strain energy occurs. Equilibrium is 
reached when the sum of these two energies is a min- 
imum. 

We thus proceed to attempt the application of this 
principle to the determination of one constant in the 
interaction potential expression using a known crystal 
structure. 

When the asymmetric unit is one molecule or less 
and this is composed of one element, the lattice energy 
per molecule can readily be calculated for a static struc- 
ture if the intermolecular interactions are satisfac- 
torily described by the sum of atom-to-atom inter- 
actions. The potential energy (E) of two non-bonded 
atoms is, according to the 6-12 interaction, given by 

E= Em(R2/r ~2- 2R/r 6) (1) 

where R =  r 6 and ro is the equilibrium separation. 
The sum of the interactions between the atoms of 

the parent molecule and those in the rest of the crystal 
follows the calculation of the sums of the reciprocal 
sixth and twelfth powers of the parent-atom to en- 
vironmental-atom distances. 

Let ~ ~rD'Z=A and Z ~ r 5 6 = B  
i=1 j = l  i=1 j = l  

where a and e are respectively the numbers of atoms 
in the parent molecule and the significant (10 A) en- 
vironment. 

The lattice energy is thus given by 

EL = Em (AR z -  2BR) . (2) 

The force (F) between two atoms which are a distance 
r apart is given by -dE/dr,  i.e. from (1) by 

F= 12Em(R2/r 13- R/rT) . (3) 

Using this equation we can calculate the sum of the 
resolved forces in a specific direction on an atom in 
the parent molecule by carrying out a summation over 
all environmental atoms. For the force on atom i in 
the x direction for example we get 

F,x=12Em(C, xRZ-D,xR) (4) 
where 

and 

C,== ~ (r513) (xj-x ,) /r , j  
j = l  

D~x = Z (r[j 7) (x j -x l ) /r i j .  
j = l  

Analogous expressions exist for the sum of the resolved 
forces acting on atom i in the y and z directions. When 
the squares of these are added to the square of equa- 
tion (4) above, an equation for the square of the re- 
sultant force acting on atom i is obtained. This equa- 
tion will have the form 

(F~)Z = 144 Ez,,,(G,R4-2H~R3+IiRZ). (5) 

We now make the reasonable assumption that the 
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mechanism whereby the crystal forces displace an atom 
(i) from its gas-phase position in the molecule is an 
elastic process. The strain energy (E~) involved in the 
displacement of an atom i through a distance dt from 
its position in the free molecule is given by 

(E~),=½k,d z (6) 

where ki is the force constant which is directionally 
appropriate to the displacement d~. 
As 

F~=kidl (7) 

we can calculate the molecular strain energy (E,,s), 
using (7) in (6). 

~.. (Es), = Eros = (F,)Z/2k, (8) 
i=I i=I 

where (F~) z is defined from (5) and (4). 
If the ki are known, the molecular strain energy can 

be calculated. As this is usually not so, we introduce 
a further simplifying assumption and put k~ =k, i.e. 
we assume all k~ to be equal. The molecular strain 
energy thus becomes 

Em~= ~ (F,)Z/2k. (9) 
i=1 

The constant R (i.e. r 6) should now be chosen to min- 
imize the sum of the lattice and molecular strain ener- 
gies. It is obvious that this cannot be done unless both 
Em and k are known. As neither are known in general, 
the method cannot be applied to molecular crystals. 
If, however, the values of ro which minimize these two 
energy terms independently happen to be equal to close 
approximation, the mean value of r0 is in effect con- 
sistent with a minimum in the sum of the lattice and 
molecular strain energies. If, as is found in practice, 
the values of r0 from the lattice and molecular strain 
energies differ, the former is nearer the correct value 
as substitution of reasonable values into (2) and (9) 
shows that this represents at least 90 % of the total 
energy. 

Minimization of the lattice energy E, as given by (2) 
with respect to R, gives 

R,=r6=BIA= ~, ~ rh61 ~, ~, rh '2. (10) 

Minimization of the molecular strain energy Em~ from 
(9) and (5) with respect to R gives 

Rm~:r6m~:{3 ~ Hi+[9( ~ Hi) 2 
t=1 i=1 

-8 ~ G, ~ I1]'/2}I4 ~ G,. (11) 
i=1 i=1 i=1 

Derivation of constants from mechanical considerations 

The preceding work has indicated that energy con- 
siderations cannot be used to compute optimum values 
of the interaction constants without prior knowledge 

of inaccessible force constants. We thus turn our atten- 
tion to the derivation of constants from considerations 
concerning various properties of the forces operating 
in a crystal in equilibrium. 

Due to the relatively homogeneous distribution of 
atoms in crystals, the usual mechanical laws do not 
lead to a satisfactory method for determining optimum 
constants. For example, the resultant force on a mol- 
ecule is inevitably calculated to be zero when the mol- 
ecule is centred on a crystallographic centre of sym- 
metry. The magnitude of the resultant force is thus 
independent of the interaction used in this case. When 
the molecule is not at a centre of symmetry, the resul- 
tant force is small and the vectorial sums involved 
consist mainly of accumulated errors and are thus un- 
suited to use in constant-determining procedures. Anal- 
ogous argument is valid for the moments of these forces 
but in this case zero sums are induced by mmm sym- 
metry. 

Mechanical equilibrium involves more than simply 
the equality of the resultant forces (or moments) act- 
ing on each side of the molecule. There is an internal 
pressure operating within the crystal, resulting from 
attractions which bridge each molecule, and this pres- 
sure can be calculated in the same way that the other 
forces within the crystal can be calculated. This inter- 
nal pressure results in the forces between atoms in the 
parent molecule and the nearest neighbour environ- 
ment being repulsive in total in such a way that they 
exactly oppose the effect of the internal pressure. The 
manner in which this principle can be used in practice 
is best illustrated by the following example. 

Consider Fig. 1. Let (i) RE and LE represent all the 
atoms in the environmental molecules to the right and 
left of the stippled line respectively, excluding those 
in the parent (P) molecule: and (ii) RS and LS re- 
present all the atoms in a line sequence of molecules to 
the right and left of the stippled line respectively, e.g. 
those in molecules A, B and C and A', B' and C' 
respectively. The x components of the forces between 
the parent molecule atoms and the RE must equilibrate 

I 
I 

I 

Fig. 1. The  env i ronment  of  the paren t  m o l e c u l e .  
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those between one LS and the RE. Likewise those be- 
tween the parent molecule and the LE must balance 
those between one RS and the LE. When this is so, 
the repulsions between nearest-neighbour molecules 
exactly compensate the internal pressure resulting from 
long range attractions. When there is a single or a frac- 
tion of a molecule in the asymmetric unit, this condi- 
tion can be expressed as follows, making errors in only 
third and more remote neighbour interactions: 

Y. E. IF,,tx+ E, E, tF,,Ix=O 
P TE P SNE 

in which P represents summation over the parent mol- 
ecule, 
TE = R E + L E  and represents summation over the 

total environment, 
SNE = summation over all non-nearest-neighbour mol- 

ecules in the total environment. 
The modulus signs in the equations above imply the 
ignoring of the directions of the interatomic vectors. 
Some of the forces will be repulsive and others attrac- 
tive, depending on the magnitude of R, and this will 
not be affected by taking moduli as indicated. 

Carrying out these summations results in equations 
of the form 

12Em[(R2 Jx - RxKx) + (R2 J~, - RxKx)] =0  

and thus 

r 6 x = R x = ( K ~ + K ~ ) / ( J x + J f O  . (14) 

Three values are thus obtained for r0, and these are 
deduced from the requirement that the repulsions be- 
tween nearest neighbours compensate the internal pres- 
sure forces in the crystal in each direction. 

Programming of the calculations 

A FORTRAN program has been written to perform 
the calculations. Input data consist of the cell constants, 
the number of molecules per cell, the number of atoms 
per molecule, the coordinates of each atom in the cell, 
the range in cells of the computer-generated parent 
molecule environment, the maximum interatomic dis- 
tance to be taken into account in the calculations and 
an interatomic distance which when found indicates 
that the molecules containing the atoms in question 
are nearest neighbours. A feature which allows elimina- 
tion of thermal expansion effects by contracting the 
cell without contracting the molecules has also been 
incorporated into the program. 

The program calculates all interatomic distances r~j 
from the parent molecule to those in the environment 
and generates the sums needed to determine r0 from 
equations (10), (11) and (14). 

Waals diameters. This results from its existence in three 
crystalline forms whose structures have been deter- 
mined. These are ~-monoclinic: Burbank (1951); 
fl-monoclinic: Marsh, Pauling & McCullough (1953); 
and hexagonal: Straumanis (1940). The thermal con- 
stants needed to establish approximate 0 °K structures 
are available for the ~ (Newton & Colby, 1951), and 
hexagonal (Straumanis, 1940) phases. The former have 
also been used for the/?-phase extrapolation to 0°K 
as, after suitably interchanging axes, these two struc- 
tures are very similar. 

The results of the calculations for selenium are given 
in Table 1. The spread in the results obtained for the 
three orthogonal directions using the internal pressure 
method is about 1% for each phase. Partial elimina- 
tion of the anisotropic thermal motion effects by con- 
tracting the structure to an extrapolated 0 °K arrange- 
ment leads to no improvement in the agreement be- 
tween the results for the three directions. The two 
monoclinic phases should give similar results as they 
are both molecular crystals containing eight-mem- 
bered selenium rings. This is found to be the case to 
within the experimental errors (,,~ 1%) of the structure 
determinations. The calculations for the hexagonal 
structure were done by excluding from the summations 
all interactions between adjacent atoms in the same 
spiral chain. The resulting values are some 5 % lower 
than those for the monoclinic structures. This is in 
keeping with the metallic nature of the hexagonal phase. 

The van der Waals diameters which stem from inde- 
pendent lattice and molecular strain energy minimiza- 
tion are, respectively, slightly higher and substantially 
lower than those deduced from internal pressure con- 
siderations. This is what is expected qualitatively as 
the sum of the two energies should be minimized. The 
weighted mean of the two results should thus be correct 
and this would be far closer to that deduced from lattice 
energy minimization as the molecular strain energy is 
by far the smaller of the two types. 

It must be emphasized that the constants derived 
are probably applicable only to the situation on which 
their derivation is based. Thus constants derived from 
lattice-energy or equilibrium considerations may be 
seriously in error when applied to the much closer ap- 
proaches found between non-bonded atoms within 
molecules. 

This situation cannot be rectified until an interac- 
tion potential is available which has been shown to be 
valid over a large range of atomic separations. 

Derivation of the second constant Em is straightfor- 
ward when compressibilities are known. As these are 
not known for the three phases of selenium, full speci- 
fication of the Se-Se interaction potential cannot be 
made at this stage. 

Application of the method to selenium 

Selenium is an ideal material on which to test the 
methods given here for the determination of van der 
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Phase 

~-Selenium 

fl-Selenium 

Hexagonal 
selenium 

Table 1. Results of  calculations for selenium 
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Theoretical expressions for two types of discrepancy factors have been obtained for crystals containing 
both heavy and light atoms in the unit cell. One of the discrepancy factors is defined in terms of the 
structure amplitude and is called the Booth's reliability index (RD. The other discrepancy factor (denoted 
by R2) is based on intensities. While the expressions for R2 can be used for crystals of any space group 
and for crystals containing any number and type of atoms in the unit cell, those for Rn can be used 
only for crystals in the triclinic and a few monoclinic space groups. 

1. Introduction 

In this paper  we shall obtain theoretical expressions 
for the discrepancy factors RB and R2 [suggested by 
Booth (1945) and Wilson (1969) respectively] for crystals 
containing both heavy and light a toms in the unit  cell. 
In the s tandard  notat ion,  these reliability indices can 
be defined as 

RB= ~ (IFol-If~])2/~ Ifol 2 (1) 
hk l  hkI  

R2= E ( I ° - I e ) Z / E  I2o" (2) 
hgl hkl 

The interest in RB lies in the fact that  it is closely 
related to the quanti ty being minimized in the usual 
least-squares method (Buerger, 1967). The theoretical 
expressions for R2 can be obtained under  more general 
conditions than for any other R indices (Wilson, 1969). 

Owing to the difficulties in the theory, we shall obtain 
different expressions for the R indices which are ap- 
plicable under  different circumstances. 

When the atoms in the model  structure]" are com- 
pletely correct we shall call it the related case and when 
all the atoms in the model are completely wrong we 
shall call it the unrelated case. When the model  
consists of  some completely wrong atoms and the rest 
completely correct, we shall call it the semi-related 
case. When the coordinates of  all the a toms in the 
model  suffer finite errors, we shall call it the imperfectly 
related case. For  simplicity of  notat ion,  we shall use 
R, UR, SR and IR to denote the related, unrelated,  
semi-related and imperfectly related cases respectively. 
It is obvious that  the R and UR cases are limiting 
cases of  the IR case. We can also think of  the R and 
UR cases as limiting cases of  the SR case. 

* Contribution No. 342 from the Centre of Advanced Study t The model structure need not include all the atoms in the 
in Physics, University of Madras, Madras, India. unit cell. 


